【ミルクカフェ掲示板TOPページ】   ■掲示板に戻る■   最後のレス   1-   最新30  

NO.10389757

みんなで難関大数学を攻略しよう!

0 名前:通りすがりの元鉄緑会大阪校の講師:2005/08/14 15:18
今日はじめて、何かのはずみで、このサイトに来てみて
皆さんが勉強に悩み、打ちこんでいる姿に共感しました。
そこで皆さんの手助けになれるよう今日から数学講義をしようと
思います。(やる気の続く限り)
週1~2問のペースで50問くらい続ければいいけどなと
思いますので、宜しくね。
なお、題材はすべて過去問です。やはり、教授達が一年に
一回の為に、苦労して作った傑作が多いため、非常に力がつきます。
でも解答はすべて私のオリジナルで書きます。
僕のボケ防止と、何よりも皆様の数学力向上のため、楽しく解きましょう!

では、
問1:すべての正の実数x、yに対し√x+√y≦k√2x+y
が成り立つような実数kの最小値を求めよ。 (1995東大)

解答その1:
「すべての正の実数x、yに対し、√x+√y≦k√2x+y」
⇔「すべての正の実数x、yに対し√x+√y/√2x+y≦k」?
ここに√2x=rcosθ √y=rsinθ {x>0 y>0のときr>0 0<θ<π/2}
とおけば右辺=√1/2・cosθ+sinθ=√3/2・sin(θ+α)≦√3/2
ここでαはtanα=1/√2なる角。
θ+α=/2のときこの等号は成立するので、√x+√y/√2x+yのx>0 y>0
における最大値は√3/2であり?⇔√3/2≦k (答)√3/2

本解答では「置き換えによりいかに式を簡単にしていくか」に注目して欲しい。
新着レスの表示
スレッドを見る(737レス)  ■掲示板に戻る■